CO2 Capture from the Air for Fuel or Storage

We had earlier done some research which seemed to clearly indicate that geologic processes generate far more atmospheric pollutants than human activity ever could. Moreover, we suggested that it didn't matter - that we should view coal emissions as another resource we should figure out how to capture and, not just dispose of, but profitably use. And, we submitted some documentation as to the feasibility of such a concept, which suggested several ways to go about it.
 
An excerpt from the attached file:
 
"CO2 from Air for Fuel
There are several other CO2 from air research and commercial projects, some with direct conversion to fuel. There is overlap with the Lackner and European project described above.

1. Department of Energy's Sandia National Laboratories uses concentrated solar energy to chemically 'reenergize' CO2 into carbon monoxide in its 'Sunshine to Petrol' project. The CO is then used to synthesize a liquid combustible fuel like gasoline, diesel, and jet fuel. Researchers have already shown proof of concept for their technique. They are now completing a prototype device, called the Counter Rotating Ring Receiver Reactor Recuperator, which uses solar energy to break down CO2. While this isn't going to produce fuel commercially tomorrow – Sandia researchers say it could be 15 or 20 years before that happens – it is an exciting and important move forward.

2. Los Alamos National Laboratory's 'Green Freedom' technology would extract carbon dioxide from the atmosphere and turn it into fuels. Air would be blown over a liquid potassium carbonate liquid to absorb the CO2, and then the CO2 would be extracted from the liquid and electrochemically separated to turn it into fuel. The Green Freedom system could use existing cooling towers, like those at nuclear power plants, which would eliminate the need to build additional structures for processing large volumes of air.

3. CO2-to-fuel technology at Carbon Sciences technology is based on natural organic chemistry processes that occur in all living organisms. Here, carbon atoms extracted from CO2 and hydrogen atoms extracted from H2O are combined, creating hydrocarbon molecules using biocatalysts and small amounts of energy. Using advanced nano-engineered biocatalysts, the technology lends itself to very large industrial scale production. The company plans to demonstrate the technology within the next several months with a prototype that can convert a stream of CO2 into an immediately flammable liquid fuel.

4. In the ELCAT (Electrocatalytic gas-phase conversion of CO2 in confined Catalysts) project, researchers at several European universities have shown the feasibility of gas-phase CO2 conversion in a catalytic process that recycles carbon dioxide into liquid hydrocarbons and alcohols. The technology, which has the potential to cut global CO2 emissions by 5 percent, could be ready for application in a decade.

5. The University of Nottingham's Centre for Innovation in Carbon Capture and Storage in the UK has successfully completed transforming CO2 into natural gas. The CICCS group has replicated the process in plants, capturing CO2, water, and solar light and transforming it into carbohydrates to create methane."
 
CO2 from coal-fired power plants and coal-to-liquid factories isn't a problem, it's an opportunity.