Fatma Karaca and Esen Bola
Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, Y ld z Technical University, Istanbul, Turkey
Abstract
In recent years, the liquefaction potential of waste materials has been investigated to increase the yield of coal conversion processes and the quality of liquid fuels from coal. The results have shown that the coprocessing of coal with biowaste materials increases liquefaction yields. In this study, the effects of liquefaction of Soma lignite with sawdust as a coprocessing agent, on total conversion, oil+gas total yields, asphaltene yields and preasphaltene yields were investigated at five different temperatures, 300, 325, 350, 375 and 400°C, 40 atm initial cold pressure, 1/1 (wt/wt) sawdust/lignite ratio and 3/1 (vol/wt) tetralin/(lignite+sawdust) ratio values.
Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, Yıldız Technical University, Davutpasa-Esenler, stanbul, Turkey
Abstract
Most of the research works done for alternative energy sources have shown that, in general, coprocessing of coal with biomass-type wastes has a positive effect on the liquefaction yields and these materials are increasingly studied as coliquefaction agents for the conversion of coal to liquid fuels. Addition of biomass waste materials to coal is known to be synergetic in that it improves the yields and quality of liquid products produced from coal under relatively mild conditions of temperature and pressure. This paper reports the coprocessing of a Turkish lignite with sawdust in the category of biomass-type waste material. The experiments have been conducted in a stainless-steel reactor, and temperature and tetralin/(lignite+sawdust) ratio were kept constant at 350 °C and 3:1 (vol/wt), respectively. This is the first time that the influence of reaction pressures on coliquefaction yields was investigated. In addition, the influence of the sawdust/lignite ratios on coprocessing conversion and product distribution was also investigated under the same reaction conditions. The runs were carried out at 10, 25, 40, 55, and 70 atm initial cold hydrogen pressure values and at 0.5:1, 0.75:1, 1:1, 1.25:1, and 1.5:1 sawdust/lignite (wt/wt) ratio values.
Coprocessing of a Turkish lignite with a cellulosic waste material: 3. A statistical study on product yields and total conversion
Fatma Karaca, Esen Bola and Salih Dincer
Chemical and Metallurgical Engineering Faculty, Chemical Engineering Department, Yıldız Technical University, Davutpa-Esenler, Istanbul, Turkey
Abstract
The objectives of this study were to evaluate statistically the effects of coprocessing parameters on liquefaction yields, to determine the key process variables affecting the oil+gas, oil and asphaltene yields and total conversion. A statistical experimental design based on Second Order Central Composite Desing was planned fixing the liquefaction period at 1 h. Parameters such as temperature, initial cold pressure, tetralin/(lignite+sawdust) and sawdust/lignite ratios coded as x1, x2, x3 and x4, respectively, were used. The parameters were investigated at five levels (−2, −1, 0, 1 and 2). The effects of these factors on dependent variables, namely, oil+gas, oil and asphaltene yields and total conversion were investigated. To determine the significance of effects, the analysis of variance with 99.9% confidence limits was used. It was shown that within the experimental ranges examined, temperature and sawdust/lignite ratio were the variables of highest significance for oil+gas yields, oil yields and total conversion."